Validation of optical tomography in vivo

نویسندگان

  • Y. Lin
  • M. B. Unlu
  • B. Grimmond
  • A. Sood
  • E. E. Uzgiris
  • D. Thayer
  • H. Yan
  • O. Nalcioglu
  • G. Gulsen
چکیده

Introduction : Multi-modality imaging is becoming a trend in developing new generation in vivo imaging techniques for diagnosis [1]. Recently, our group has developed a high temporal resolution, dynamic MRI-DOT multi-modality imaging system [2]. Dynamic contrast enhanced MRI (DCEMRI) has been proven to be the most sensitive modality in detecting breast lesions [3]. However, it has low specificity in differentiating benign and malignant lesions. Meanwhile, diffuse optical tomography (DOT) is a recently emerging optical imaging technique that uses arrays of sources and detectors to obtain spatially dependent optical parameters of tissue. It can also provide enhancement kinetics of an FDA approved optical contrast agent (ICG). The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence, DOT may be used adjunct to MRI to improve the overall specificity. In general, each component of a multi-modality system measures a different parameter set, which makes it difficult to cross-validate the parameters measured by different modalities. In this study, however, we used a bi-functional agent that provides contrast for both optical and MR imaging to validate the optical molecular imaging system in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code

Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...

متن کامل

Clinical Applications of Optical Coherence Tomography in Ophthalmology

Assessment of the peripapillary nerve fiber layer and macular thickness can be determined in ophthalmology using optical coherence tomography (OCT). Decreased nerve fiber layer thickness and macular ganglion cell thickness in optic nerve ischemia have been correlated with visual field loss. OCT allows deep optic nerve head evaluation which helps understand pathophysiology of diseases.  Furtherm...

متن کامل

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

In vivo validation of quantitative frequency domain fluorescence tomography.

We have developed a hybrid frequency domain fluorescence tomography and magnetic resonance imaging system (MRI) for small animal imaging. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration and lifetime images using a multi-modality approach. In vivo experiments are undertaken to evaluate the system. We compare the recovered fluorescence parameters wi...

متن کامل

Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry

Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...

متن کامل

An Efficient Method for Model Reduction in Diffuse Optical Tomography

We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009